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ABSTRACT

Given a power series, a apzp, let rn denote the smallest
n

modulus of a zero of Sn(z) = a zp, n , 2, 3, ..... Upper
p=Op

and lower estimates for r are obtained under the hypothesisn

thatZ a zp is the power series for an entire function withoutP

zeros. For certain classes of such series, asymptotic formulas for

r are derived. Characterizations (in terms of r ) are obtainedn n

for entire functions of the forms exp {P(z)} and exp {g(z)}, where

P(z) is a polynomial and g(z) is an entire function of finite order.



POWER SERIES WHOSE SECTIONS HAVE ZEROS OF LARGE MODULUS

I. D. Buckholtz

1. Introduction. Several theorems in the theory of polynomials deal with

the problem of obtaining bounds for the modulus of one or more zeros of a
n

polynomial, a 0 + a1 z + ... + an z , when certain of the coefficients,

ao0 al, ... ak, are regarded as fixed, and the remaining are arbitrary

(cf. [3, ch. 8]). In the present paper we apply results of this nature to partial

sums of a power series Zap zp

For each positive integer n, r will denote the radius of the largest circlen

with center at z = 0 whose interior contains no zero of the nth partial sum,

n
s (z) a azn p0p=O

We shall be concerned primarily with growth properties of the sequence {r }

The most interesting case is that in which Z a zp is the power series forP

an entire function which omits the value zero. It is not hard to show that this

is equivalent to having lim r n= o ; one can, however, construct other power

series for which lim sup rn = 00 .

Since nothing is lost by doing so, we shall always suppose that a0 = 1

This assumption will be used freely and without explicit mention. For notational

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-ll-0ZZ-ORD-2059.
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convenience Z and will denote sums taken over the nonnegative and

positive integers respectively. When there is no possibility of ambiguity,

"lim" will denote a limit taken as the variable becomes infinite.

In §2, upper bounds for rn are obtained from algebraic relations between

the zeros of s n(z) and the "first few" of the numbers a1 • a2 , a3 • ..V

From algebraic considerations alone, we show that

(1. 1) r = n°(1)
n

except possibly for certain "exceptional" power series, and, further, that

these exceptions must be power series of the form exp {P(z)}, where P(z) is a

polynomial.

In § 3 we use analytic methods to obtain lower bounds for rn in case

,a zp is an entire function without zeros. We are able to show that the
p

"apparent exceptions" to (1. 1) are actual exceptions, and thus characterize entire

functions of the form exp {P(z)} for P(z) a polynomial.

Taken together, the upper and lower bounds yield a number of asymptotic

properties of the sequence {rn} . For Za zP= exp {g(z)}, where g(z) is

an entire function of order p, we show that

loglog n
lim sup log r n ='P

n

This and similar results are discussed §4

In §5 we prove that

(1.2) lim sup rn la n = 1
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provided a pzP is an entire function of infinite order without zeros. Using

(1. 2-) and the observation that ia nl-/n is the geometric mean of the moduli of

zeros of sn(z), we deduce the following: if ZapzP is an entire function of

infinite order without zeross, an__ E and E' are positive numbers, then, for

infinitel man integers n, fewer than nE' zeros of sn(z) have moduli

greater than r (1 + E) . This result is of some interest in connection with

theorems of F. Carlson [2] and P. C. Rosenbloom [7] on zeros of sections

of entire series of infinite order.
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2. Upper bounds for r . Let 3 b zP be the power series obtained

formally from the identity

Spa pzp-p pb zp-
- pb

a z
p

Theorem 2. 1. If k is a positive integer such that bk 0, and n> k

then sn(z) has a zero in the disc

Proof. If one lets

S'(z) - p b(n) zp-

Sn(Z) p

and observes that b(n) = b for p <_ n, the result then follows from a theorem
p p

of G. Sz. Nagy [4, 5, and 3, p. 43, ex. 21.

As a consequence of the above, we have

(2.1) r. 0O(nIlk)

for everyvalue of k for which bk # 0 . If Za zp = exp{P(z)} for someP

polynomial P(z), then (2.1) holds with k equal to the degree of P(z) . If

Z a zp is not a power series of this form, then (Z. 1) holds for infinitely many

k, and we have

(2.2) rn = no(1)
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Corollary 2. 2

log r log (I/ lbkl)
(2. 3) lirn inf - < lim infloglog n -- k log k

Proof. From theorem Z. 1 we have

log r 1 log{l/ Ibk[)

log k k log k k•-+ k log k

Choose n = n(k) so that log n •-'k and let k-*Co.

The above result is of particular interest if •'b = g(z), where g(z)
P

is an entire function of order p . We then have aa pZ = exp{g(z)}, and

(2.4) lim s loglog n >Plog r nn

since the right hand side of (2. 3) is i/p

For certain entire functions g(z), Theorem Z.1 can be used to obtain an

extremely good upper bound for rn . For this purpose we make use of the

maximum term function [L(r) = f±(r, g) defined by

(Z. 5) fL(r) = max lb pI rp
p

and the central index , v(r), which is the largest integer m such that

(r= b rm
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Theorem 2.3. Let Z a p = exp{g(z)}, where g(z) =,b zp is an-- p P _

entire function of finite order. For each n, let Pn be the positive number

such that ±(Pn) = n, where 4(r) is defined by (2. 5) . Then for all

sufficiently large n, sn(Z) has a zero in the disc Iz<__ nP "

Proof. From Theorem 2. i,

r{lk { I 1/k

n -- b --

Let k = v(p) Then lbk. = = n . Therefore rn<

It remains to show that k < n, or equivalently, that v(Pn) < .(Pn) This
n n

is true provided the inequality

(2.6) v(r) < i(r)

holds for all suffiently large r . A proof of (2. 6) follows easily from the

relation [11, p. 34]

log v (r)
lim sup log r p'

where p is the order of g(z) . The hypothesis that p is finite can,

consequently, be replaced by (2. 6).
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3. Lower bounds for r . We obtain lower bounds for the numbers rn n

under the assumption that Zazp = exp{g(z)}, where g(z) b zp is

an entire function. We shall use G(z) to denote the majorant of g(z) defined

by

(3.1) G(z) = Z' lbpI zp .

We note for future use that the order of G(z) is the same as that of g(z); we

shall also need the inequality

(3. Z) Z iapI rp< exp{G(r)} if r>0

p

A proof of (3. 2) follows from expanding exp {G(r)} as a power series in r and

observing that the coefficient of rp is at least as great as la I
p

Theorem 3.a1. Let Z a ap exp {g(z)}, where g(z) is an entire function
p

with majorant G(z) defined by (3. 1) . If n is a positive integer, then

(3.3) r > r exp {zG(r) } for all r > 0
n n

In particular, if a is the positive number such that G(a_) n, then

a
(3.4) r >-nn 2

e

Furthermore, if g(z) is not a polynomial, then for e > 0 one has

(3.5) r. >na (I-
n n

for all sufficiently large n
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x pProof. Suppose r > 0 and let f(z) = a zp. We shall establish (3.3)P

by showing that, if Izi <r exp{- 2G(r)/n}, then

1 f(z) <1

and therefore s (z)#O 0 This is obvious if z =0; if 0< IzI<rexp{-2G(r)/n}n

then O< IzI < r, and

If(-T le l < exp{G(r)}

Also,

00

[f(z) -s (z)= I a zPI
p=n+l P

0o

In y a Irp In
p=n+l P r

[Pjz Z ja'p rp
r p=n+1 a

< Iz nj [r
Z n aIr

r p

< IzIn{G)r ~l exp {G(r)}

by virtue of (3. 2) . Therefore

f(z) = f n(z)

< exp1{ n )
r<n
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since Izi < r exp {-ZG(r)/n} . This proves (3.3) . If r = a , we have

(3.4)

The proof of (3. 5) depends on the following property of G(r)

[6, vol. Z, p. 4]: if g(z) is not a polynomial and 0 < c < 1, then

(3.6) lim G(cr)= 0r--> o0 G (r)

We now make use of (3.6) and the sequence {an} to construct a

sequence {cn} such that

G (cna)
lim c = 1 and lim - 0

n G(n)

If in (3.3) we let r = c a we have

ZG (c a )
r > c a exp{- n

n n n n

a ZG (n an)
n n G(an

Since

ZG(c n an)
lim c exp{- }G= 1n G (an5

this proves (3.5).
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4. Asymptotic properties of the sequence {rn} . In a number of cases,

fairly precise information about the sequence {rn} can be obtained by

comparing the upper bounds of § 2 with the lower bounds developed in § 3

Theorem 4.1. If a zp exp {P(z)}•, where P(z) is a polynomial of

degree k, then there are positive numbers A and B such that

An /k < /k
An < r < Bn, n = 1 2,3.....

The proof, which is omitted, follows easily from (2.1) and (3.4)

In view of (2. 2), one sees that Theorem 4.1 characterizes power series

for entire functions of the form exp {P(z)} Among all power series, the

exponential series (more accurately the series for ae bz) is the only one for

which r increases as rapidly as a linear function. Zeros of sections andn

remainders of this series have been investigated by G. Szeg6 [9].

Theorem 4. 2 is to some extent analogous to a theorem of M. Tsuji [10] on

the maximum modulus of zeros of sections of an entire series.

Theorem 4. 2. If Za zp = exp {g(z)}, where g(z) is an entire functionp

of order p (0 < p<c__o) , then

loglog n
lim sup log r n P

n

Proof. Since the order of G(z) is also p, we have

loglog G(r) > li sup loglog n
plim sup log r -- log su

-oon-•-oo n

> jim sup loglog n2

log(rn e



#398 -ll-

by (3.4) . Since log(rn e ) -- log r n

logloq n
plimsup log r

n

This, together with (2.4), completes the proof.

If in Theorem 4. Z 0< p< o and g(z) is oftype -(0<_T<_00), one

can prove a sharper result, namely, that

lim sup 1-2- n
rP
n

For this one needs (3. 5) in place of (3. 4); the ">" half of the result is

obtained from Theorem 2. 1 by a procedure similar to the proof of Corollary 2. 2.

In this case one chooses n = n(k) so that log n -- 'k/p

If g(z) is of finite order, the asymptotic relation [6, vol. 2, p. 8j

(4.1) log G(r) '-log (r, G) = log j.±(r, g)

can be used to obtain information about the relative sizes of a and n

Theorem 4.3. If Za zp = exp{g(z)}, where g(z) is an entire functionP

of finite order, then

log an '--'log r n-log Plo n n n

-2
Proof. Since a n e < rn <- Pn for large n, it suffices to prove that

log e n'-- log Pn ' Using (4. 1), we have

log G( nn) --'log ±(pn log n = log G(an)
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so that

(4.2) log G(a n)log G( n)

Since log G(r) is an increasing and convex function of log r, one can

conclude that log a n ý log Pn . This completes the proof.

Convexity of log G(exp(r)) is considerably more than one needs for the

proof of Theorem 4. 3. We take advantage of this to prove that an -n n

under an added hypothesis that G(r) satisfies a relatively weak growth

condition.

Theorem 4.4. Let E ap zp = exp {g(z)}, where g(z) is an entire function of

finite order. Suppose in addition that log G(r) r6 H(r), where 6 > 0 and

H(r) is nondecreasin . Then an -r n ýP

Proof. Suppose e > 0 . The condition on G(r) guarantees that g(z) is

not a polynomial; therefore a (I- E) < r < P n for sufficiently large n, and

we need only to prove that an • n

From (4.2) and the condition on G(r), we have ( n/Pn) 5 'H(Pn)/H(an)

But (a n/Pn)6 <1 , and H(P )/IH(on ) >1 since H(r) is nondecreasing.

Therefore an n

As a special case of the above, we note that the condition

log G(r) - T rP

for positive numbers p and T implies that

r n "{OTg n i/P
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5. A relation between {r} and {a} . In this section we restrict our

attention to the case Za zp = exp{g(z)}, where g(z) is an entire functionP

which is not a polynomial. This is equivalent to requiring that Za zp be an

entire function of infinite order without zeros. We shall compare the lower

bound (3. 5) for r with the "obvious" upper bound,

nn(5.1) r <if a •0 0Sn -- la n11/n -- n

(The right hand side of (5. 1) is the geometric mean of the moduli of zeros of

Sn (z).) Our principal result is the following:

Theorem 5. 1. If Z a zp is an entire function of infinite order withoutp

zeros, then

lim sup [an fanI/n im sup r 11/nn n an =1.

Before proving Theorem 5.1 we shall consider two of its corollaries.

Corollary 5.2. Let Za zp satisfy the hypothesis of Theorem 5. 1. If > 0

then

n(I -) E< r and rnlanlln <

for all sufficiently l n, and

(l+ > r>•n n ja nll/n

for infinitely many n
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Proof. Theorem 5. 1 and inequalities (3. 5) and (5. 1).

One sees, therefore, that (3. 5) and (5. 1) are, in a sense, "best possible"

results.

Corollary 5. 3. Let Z a zp satisfy the hypothesis of Theorem 5. 1. IfSp
S> 0 and e' > 0, then for infinitely many integers n, fewer than n E' zeros

of s (z) have moduli greater than r (+ E)- nn

Proof. Choose 6 so that

0< 6 < I -(I + )-1E

If n is a positive integer for which

r > 1-/
n [ajl/n'

then an easy calculation shows that fewer than n e zeros of sn (z) have moduli

larger than r (I+ -•)n

Proof of Theorem 5. 1. From (3. 5) and (5. 1) it follows that

lim sup cn Ia Il/n < lim sup r lanll/n < 1

consequently we have only to prove that

(5.2) lim sup cn [an1l/n >1

For clarity, the proof of (5. 2) will be divided into three lemmas. In the first two,

the hypothesis of Theorem 5.1 is presupposed.
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Lemma 5. la. For all r > 0

(5.3) a >r exp{-z-•)}

Proof. The function r exp {-2G(r)/n } assumes its maximum at the number

r = yn such that Zyn G'(y n n . Since 2r G'(r)>G(r) for all r >0, we

have

an >Y >Yn exp{- n } "

Lemma 5.lb. If e >0•, then

, > r Mr ]-8/nE
an > r-[M r] forall r>0, where

(5.4) M(r) = jiax z[ Xar z

Proof. The proof depends on the following variant of the Borel-Carath6odory

inequality (proved, but not explicitly stated, in [11, pp. 17-20]):

If 0 < r < R and b b zp is an entire function, then

4r

(5.5) lb I rp <_ R A(R)

where A (R)= max {Re ' b zp}

lzI=R

If we rewrite (5.3) in the form

>r 2 r
n 1 + exp n G(-)}
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and in (5.5) replace r and R by r/(l+ E) and r respectively, we have

r 8n>7 exp { - n )
n l+E nE

Since A(r) z log M(r), the result follows.

Our third lemma is of a more general nature and applies to all entire functions

a Zp of infinite order. (The condition a. = 1 is still presupposed, although
p

the result is true without it.)

Lemma 5. 1c. Suppose that z a is an entire function of infinite orderP

and K>__ . Let

u = un(K) = min[M(r)K n 1 2 3nn n n=iZ3 .. ,
r>O r

where M(r) is iven b (5.4) . Then

IanIl/n

lim sup j l/n I 1 .

n-* 00 Uln!
n

Proof. For all r > 0

ja < ~r)< [M (r) KIan_ <iI <Žij
n n r nr r

by the Cauchy inequality. Therefore Ian <_ n, and the proof will be complete

if we show that

(5.6) lim sup 1/n > 1
U n
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To establish (5.6, we observe that

M (r) _ ap rp <_ rp

where (n, T n), n = 0, 1, 2, ... are points on the Newton polygon associated

with Za pzp (cf. [11, ch. 2] and [6, vol. Z, ch. 1J). Let d0 = 1 and

dn = 9n-i/•i n' = i 2P 3, .... The sequence {dn } is nondecreasing and

has limit 00 ; therefore the function k(z) = ,p zp is, in the terminology of

[1], a comparison function. If we let

r=r' - dn+l n

we have [1, p. 7]

M(r') <. W(r') < (n+l)d n
n n

A short computation shows that

(5.7) uljn, < n Yn

n -d n

where X =(I +l/n) (n+ 1)K/n
n

and Y = Td )n "

Let N denote the set of integers n for which [an = ' . Since a zp

is of infinite order, it follows from [2, p. 4, eq. 9] that there is an infinite

subset N of N such that

(5.8) lim d •in/n = lim d IaI =a .
ne No nEN 0
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Equation (5.8) is, in fact, equivalent to

log j. (rl
lirm if (r) =0

where in this case, ýL(r) and v(r) denote the maximum term and central

inde of he erie Zapz Wihtifomlto,(.8asoolwss

a special case of a theorem of S. M. Shah [8].

Making use of (5.7) and (5.8), we h4ave

lanilln dn lanllln
lim sup /n > lim sup

u1n nn

dnanli/n

> lim n-- ~XY
n1 NO n n

This completes the proof of Lemma 5. 1c.

It is now an easy matter to complete the proof of Theorem 5. 1. In Lemma 5. lb

choose 0 < E < 8 . In Lemma 5. lc let K = 8/F and choose r so that

[M (ry1
8 /E

"=" U
n n

r

Then
11/n >anIIn -8/nEn 1 /n

a la1+ r[M(r)-
n n - 1 + - 1+E u
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Therefore lim sup an anil/n-> i

and, since E is arbitrary, (5. 2) follows. This completes the proof.

Theorem 5. 1 adds an interesting footnote to certain more general results

on zeros of sections of power series. If Z ap zp is an arbitrary entire function

of infinite order and E > O, it is known [2, 7] that for all sufficiently large

integers n in the set N0 (of Lemma 5.lc)-, all but o(n0 zeros of sn(z) lie

in the annulus

lan -iln (I - e) < I zl < [an + -E

If Za zp omits the value zero, it follows from Theorem 5.1 that for all

sufficiently large n e N0 , no zero of s (z) lies in the interior of the innern

circle of the annulus.-
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